Update on the lattice calculation of direct CP-violation in K decays

(aka "Update on K=>pi pi & All That")

Christopher Kelly & Tianle Wang (RBC & UKQCD collaborations)

Lattice X IF 2019
Wednesday September 25th 2019,
BNL, USA

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK)

Taku Izubuchi

Yong-Chull Jang

Chulwoo Jung

Meifeng Lin

Aaron Meyer

Hiroshi Ohki

Shigemi Ohta (KEK)

Amarjit Soni

UC Boulder

Oliver Witzel

CERN

Mattia Bruno

Columbia University

Ryan Abbot

Norman Christ

Duo Guo

Christopher Kelly

Bob Mawhinney

Masaaki Tomii

Jiqun Tu

Bigeng Wang

Tianle Wang

Yidi Zhao

University of Connecticut

Tom Blum

Dan Hoying (BNL)

Luchang Jin (RBRC)

Cheng Tu

Edinburgh University

Peter Boyle

Luigi Del Debbio

Felix Erben

Vera Gülpers

Tadeusz Janowski

Julia Kettle

Michael Marshall

Fionn Ó hÓgáin

Antonin Portelli

Tobias Tsang

Andrew Yong

Azusa Yamaguchi

UAM Madrid

Julien Frison

University of Liverpool

Nicolas Garron

MIT

David Murphy

Peking University

Xu Feng

University of Regensburg

Christoph Lehner (BNL)

University of Southampton

Nils Asmussen

Jonathan Flynn

Ryan Hill

Andreas Jüttner

James Richings

Chris Sachrajda

Stony Brook University

Jun-Sik Yoo

Sergey Syritsyn (RBRC)

Motivation and previous result

Motivation

- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP.
- Amount of CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in $K^0 \rightarrow \pi\pi$:

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}.$$

$$\operatorname{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left|\frac{\eta_{00}}{\eta_{\pm}}\right|^2\right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

$$\operatorname{PV} \qquad \text{measure of indirect CPV}$$

measure of direct CPV

- Small size of ϵ ' makes it particularly sensitive to new direct-CPV introduced by many BSM models.
- In terms of isospin states: $\Delta I=3/2$ decay to I=2 final state, amplitude A_3 $\Delta I=1/2$ decay to I=0 final state, amplitude A_0

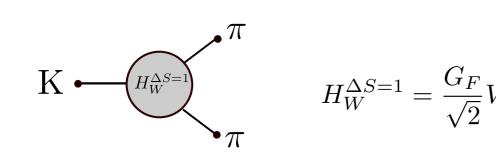
$$A(K^{0} \to \pi^{+}\pi^{-}) = \sqrt{\frac{2}{3}}A_{0}e^{i\delta_{0}} + \sqrt{\frac{1}{3}}A_{2}e^{i\delta_{2}},$$

$$A(K^{0} \to \pi^{0}\pi^{0}) = \sqrt{\frac{2}{3}}A_{0}e^{i\delta_{0}} - 2\sqrt{\frac{1}{3}}A_{2}e^{i\delta_{2}}.$$

$$\epsilon' = \frac{i\omega e^{i(\delta_{2} - \delta_{0})}}{\sqrt{2}} \left(\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\right)$$
(δ_{1} are strong scattering phase shifts.) 4/35

Overview of calculation

- Hadronic energy scale << M_w use weak effective theory.
- $K \rightarrow \pi\pi$ decays require single insertion of $\Delta S=1$ Hamiltonian:



$$H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} \sum_{j=1}^{10} [z_j(\mu) + \tau y_j(\mu)] Q_j$$

perturbative Wilson coeffs.

renormalization

matrix (mixing)

Use RI-SMOM and

convert to MSbar

$$\tau = -\frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}} = 0.0014606 + 0.00060408i$$
 Imaginary part solely responsible for CPV (everything else is pure-real)

LL finite-volume correction

$$A^{I} = F \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} \sum_{j=1}^{7} \left[(z_{i}(\mu) + \tau y_{i}(\mu)) Z_{ij}^{\text{lat}} \xrightarrow{\overline{\text{MS}}} M_{j}^{I, \text{ lat}} \right] M_{j}^{I, \text{lat}} = \langle (\pi \pi)_{I} | Q_{j} | K \rangle \text{ (lattice)}$$

Summary of published results

[Phys.Rev. D91 (2015) no.7, 074502]

- A₂ computed on RBC/UKQCD 64³x128 and 48³x96 2+1f Mobius DWF ensembles with the Iwasaki gauge action and physical pion mass.
- a^{-1} = 2.36 GeV and 1.73 GeV resp continuum limit taken.
- Statistical errors sub-percent, dominant systematic errors due to truncation of PT series in computation of RI-SMOM to MSbar matching and Wilson coefficients.
- 10% and 12% total errors on Re(A₂) and Im(A₂) resp.

[Phys.Rev.Lett. 115 (2015) 21, 212001]

- A_0 computed on 216cfgs of 32³x64 Mobius DWF with Iwasaki+DSDR gauge action and physical pion mass.
- G-parity BCs in 3 directions to give physical kinematics.
- Single, coarse lattice with $a^{-1}=1.38$ GeV but large physical volume to control FV errors.
- 21% and 65% stat errors on $Re(A_0)$ and $Im(A_0)$ due to disconn. diagrams and, for $Im(A_0)$ a strong cancellation between Q_4 and Q_6 .
- Dominant, 15% systematic error is due again to PT truncation errors exacerbated by low renormalization scale 1.53 GeV.

Result for ε'

- Re(A_0) and Re(A_2) from expt.
- Lattice values for $Im(A_0)$, $Im(A_2)$ and the phase shifts

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right]\right\}$$

$$= 1.38(5.15)(4.43) \times 10^{-4}, \text{ (calculated)}$$

$$16.6(2.3) \times 10^{-4} \text{ (experiment)}$$

- Error is dominated by that on A₀.
- Total error on Re(ε '/ ε) is ~3x the experimental error.
- Result is in tension with Standard Model at 2.1σ level.

The "ππ puzzle" and multi-operator fits

On the importance of the $\pi\pi$ state

- Understanding I=0 $\pi\pi$ system is crucial:
 - Energy is needed for time dependence of correlation function from which we extract finite-volume $K \rightarrow \pi\pi$ matrix element.
 - Phase shift enters Lellouch-Luscher finite-volume correction to matrix element.
 - Phase shifts also enter in formula relating A_i to ϵ' itself
- 2015 calculation of δ_0 in 2σ tension with dispersion theory calculation:

$$\delta_0 = 23.8(4.9)(2.2)^{\circ} \text{ (latt)}$$

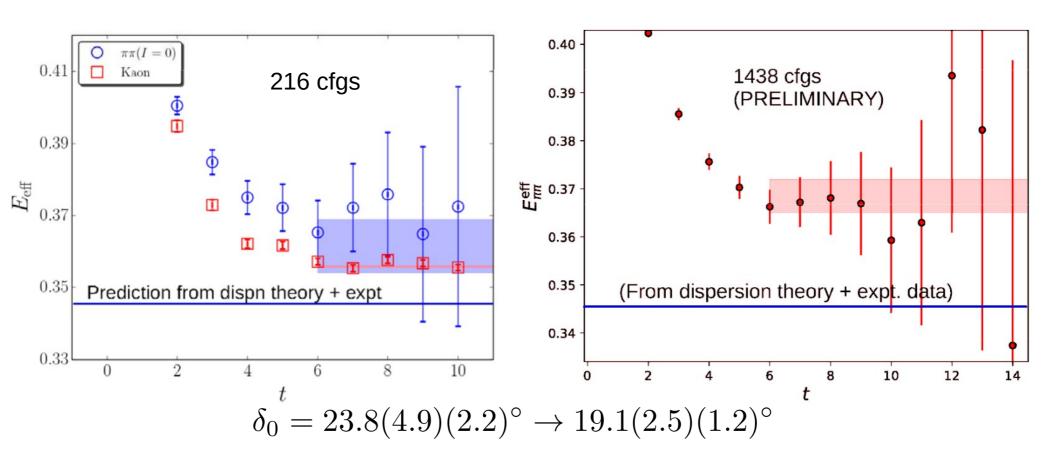
= 34° (G.Colangelo *et al*)

• This observation prompted increased focus on $\pi\pi$ system.

Increased statistics

• To resolve the "pi-pi puzzle" we increased statistics from 216 to 1438 (a 6.6x increase!).

However this did not resolve the situation:



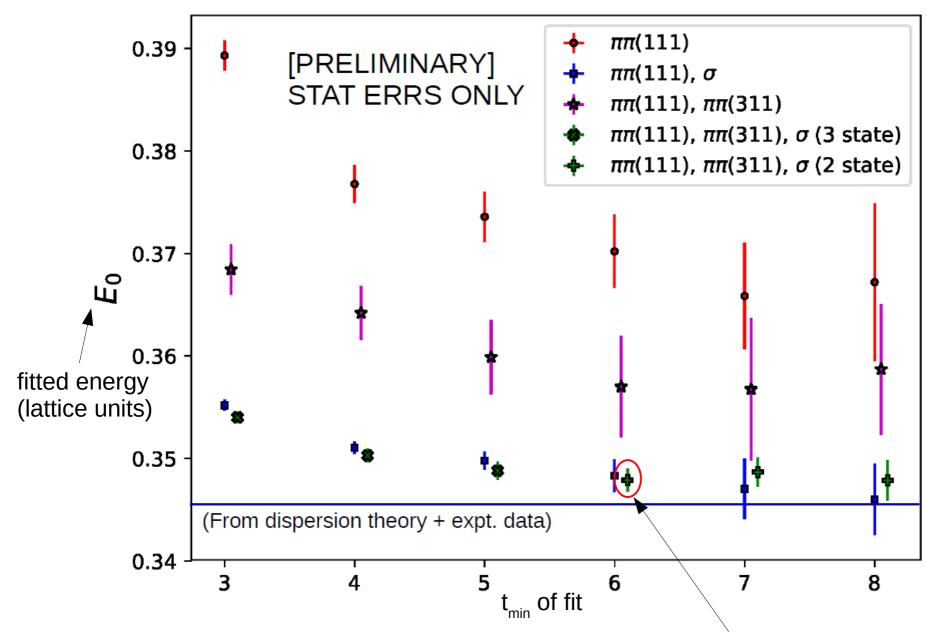
Resolving the pi-pi puzzle

- Most likely explanation is excited state contamination masked by rapid growth of statistical errors.
- To resolve this we turned to multi-operator fits which provide much greater resolution on excited states time dependence alone.
- Obtain parameters by simultaneous fitting to matrix of correlation functions

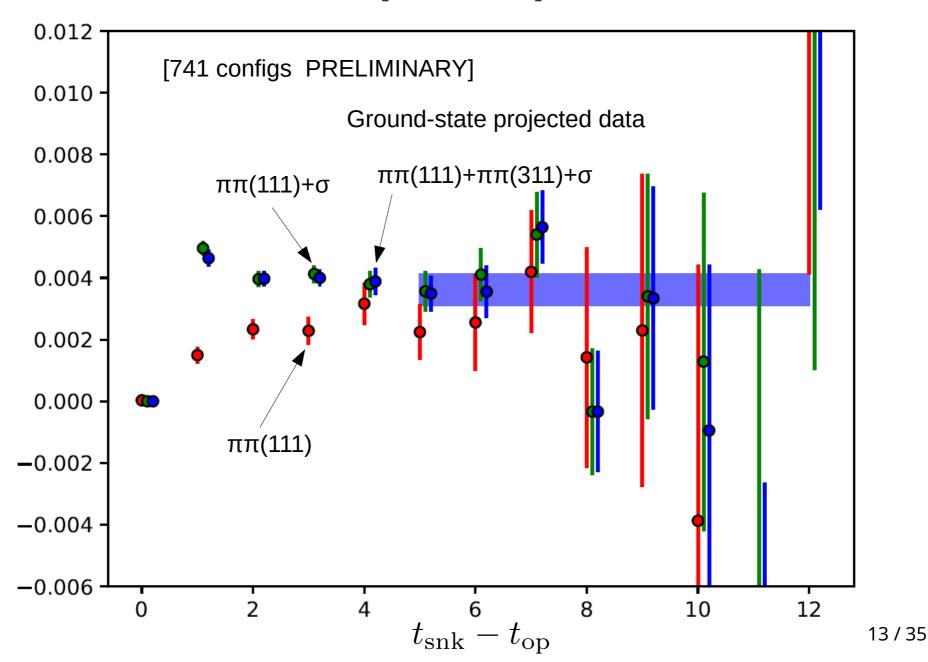
$$C_{ij}(t) = \langle 0|O_i^\dagger(t)O_j(0)|0\rangle = C + \sum_{\alpha} A_{i,\alpha} A_{j,\alpha} e^{-E_{\alpha}t}$$
 round-the-world single pion propagation small compared to errors - drop

- Increased from 1 \rightarrow 3 operators: $\pi\pi(111)$ $\pi\pi(311)$ σ [cf T.Wang Monday]
- 741 configurations measured with 3 operators.

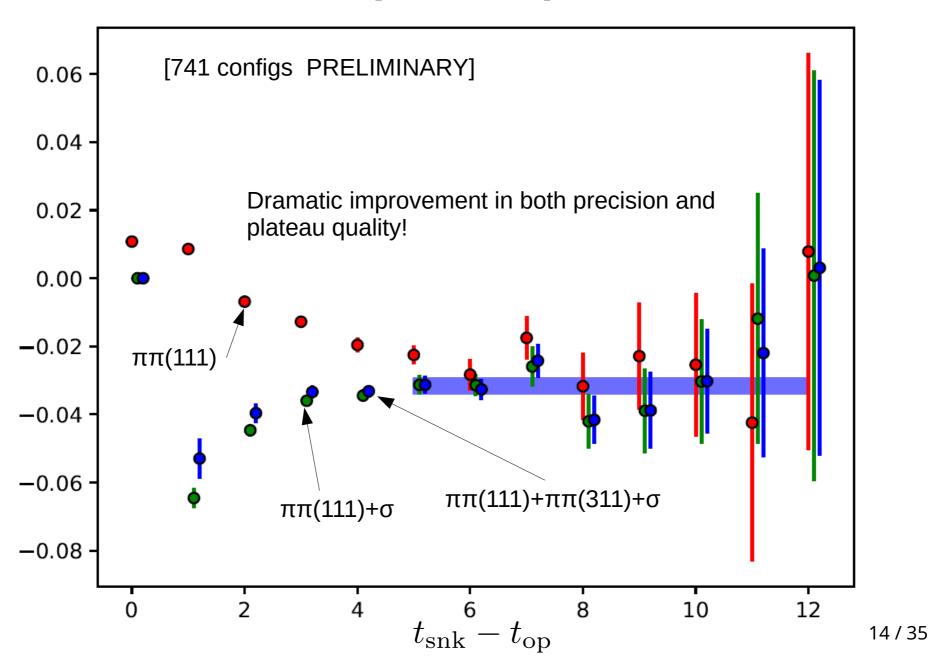
Effect of multiple operators on $\pi\pi$



Effect of multiple operators on K→ππ (case I)



Effect of multiple operators on K→ππ (case II)



Other systematic error improvements

Systematic error improvements

Description	Error	Description	Error	
Finite lattice spacing	12%	Finite volume	7%	
Wilson coefficients	12%	Excited states	$\leq 5\%$	
Parametric errors	5%	Operator renormalization	15%	
Unphysical kinematics	$\leq 3\%$	Lellouch-Lüscher factor	11%	
Total (added in quadrature)				

[RBC&UKQCD PRL 115 (2015) 21, 212001]

NPR+Wilson Coefficients

- NPR error large due to use of 1-loop PT to match to MSbar at low, 1.53 GeV renormalization scale.
- Since 2015 have improved NPR error $15\% \rightarrow 8\%$ (preliminary) by increasing scale to 2.29 GeV using step-scaling procedure. [PoS LATTICE2016 (2016) 308]
- Inclusion of dim.6 gauge-invariant operator G_1 which mixes with Q_1 under renormalization, effects demonstrated to be %-scale as expected.

[G. McGlynn arxiv:1605.08807]

- Do not expect significant improvement in Wilson coeffs error from scale increase as it is overshadowed by use of PT to cross the charm threshold (1.29 GeV).
- Working on circumventing this by computing 3 → 4 flavor matching non-perturbatively.
- Requires $\mu \ll m_c$. At these low energies, MOM-scheme NPR severely hampered by increased mixing with tower of gauge-noninvariant operators.
- · Circumvent using position-space NPR which does not require gauge fixing.

[cf Masaaki Tomii Tuesday] Also: Calculation of non-EW NNLO Wilson coefficients is close to being published.

[Cerdà-Sevilla, Gorbahn, Jäger, Kokulu]

Results suggest only small NNLO corrections to PT matching over charm threshold.
 Depending on publication timing our quoted WC systematic may be smaller!

[cf. M. Cerdà-Sevilla Kaon 2019 talk]

Discretization error

- Currently have results only on single lattice with coarse lattice spacing a⁻¹=1.38(1) GeV.
- Require second lattice spacing. Going to finer lattice requires more lattice sites; prohibitively expensive for current gen. computers.
- Plans for repeating calculation on multiple lattices on next-Gen machines (Aurora, Perlmutter). Extensive code preparation in progress to support GPU port.

Related projects on the horizon:

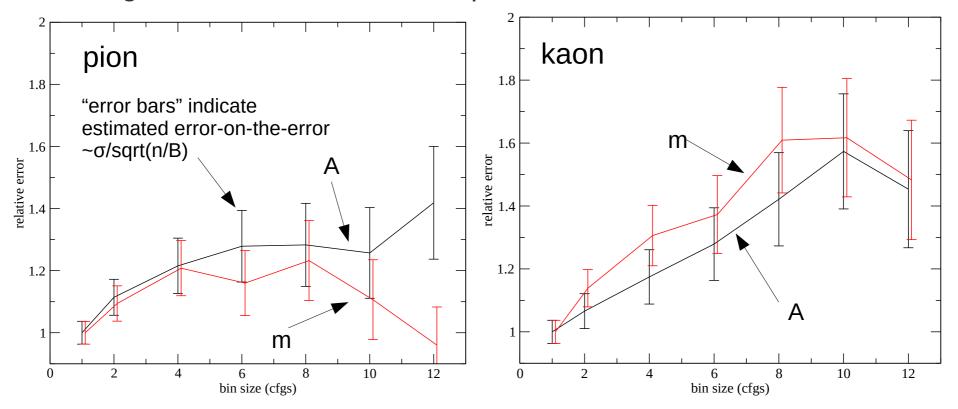
- Performing calculation taking advantage of modern multi-operator techniques to fit excitedstate $\pi\pi$ contributions directly, without G-parity BCs. [cf. D. Hoying Lattice 2019 talk]
- Laying the groundwork for non-perturbatively computing the effects of isospin breaking and electromagnetism.
 [EPJ Web Conf. 175 (2018) 13016]
- Study of complete, non-perturbative calculation of Wilson coefficients

[EPJ Web Conf. 175 (2018) 13014, arXiv:1711.05768]

Advances in statistical techniques

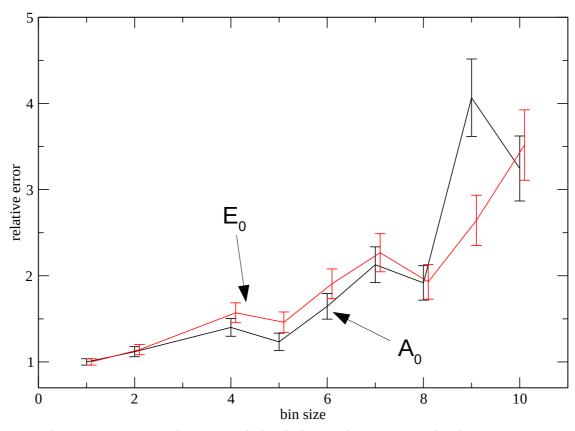
Dealing with autocorrelations

- With increased statistics we now have evidence for (limited) autocorrelation effects: τ_{int} ~ 4 MDTU (1 cfg).
- Naively expect ~1.4x larger errors.
- Standard approach is to bin (average) data over blocks sufficiently large to make the blocks independent.



Pion and kaon energies behave as expected with binning

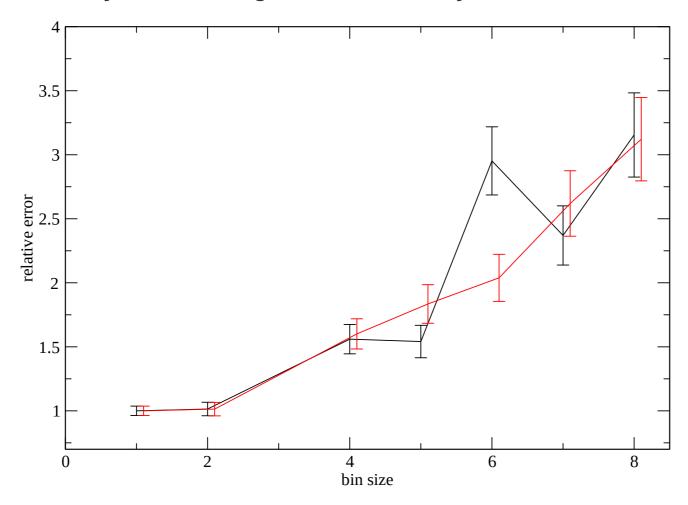
$I=0 \pi\pi 2pt function$



- $\pi\pi$ errors continue growing with bin size and do not stabilize. Why?
- Covariance matrix is 66x66 here!
- As bin size increased, fewer data points enter determination of covariance matrix matrix becomes less and less well resolved.
- Fluctuations of low eigenvalues increase, causing error growth unrelated to autocorrelation

Scrambled data

 Isolate effect of loss of resolution of covariance matrix by randomly scrambling data to destroy autocorrelations

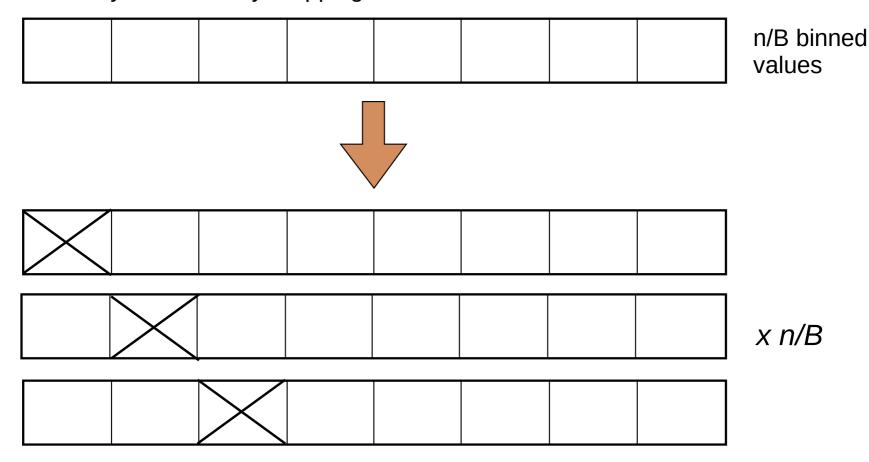


Error growth essentially the same!

Block jackknife

 To prevent loss of resolution of covariance matrix while still taking into account autocorrelations, we perform block jackknife

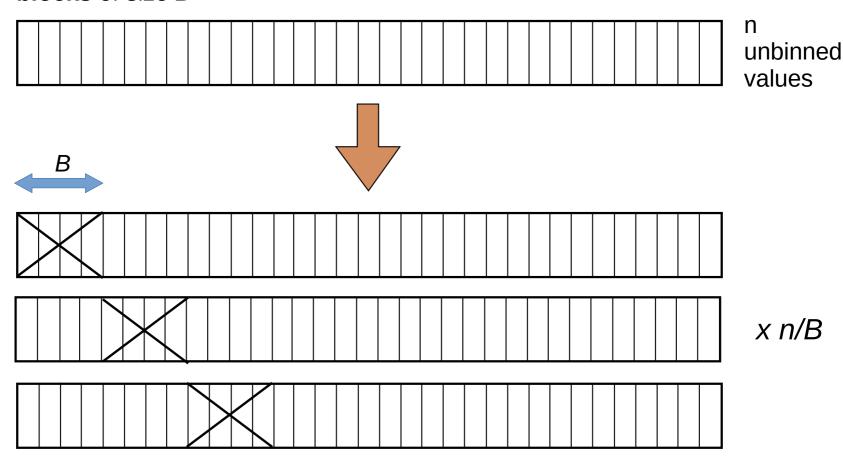
Regular, binned jackknife: generate n/B "reduced ensembles" of n/B-1 numbers by successively dropping values



With binning, covariance matrix obtained from just n/B-1 numbers

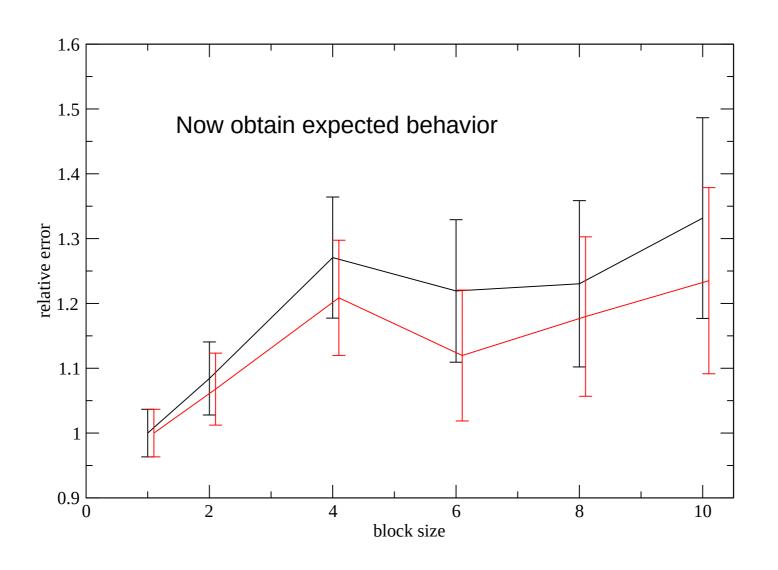
Block jackknife II

block jackknife: From *unbinned* data generate *n/B* reduced ensembles but of size *n-B* values by throwing away successive **blocks** of size *B*



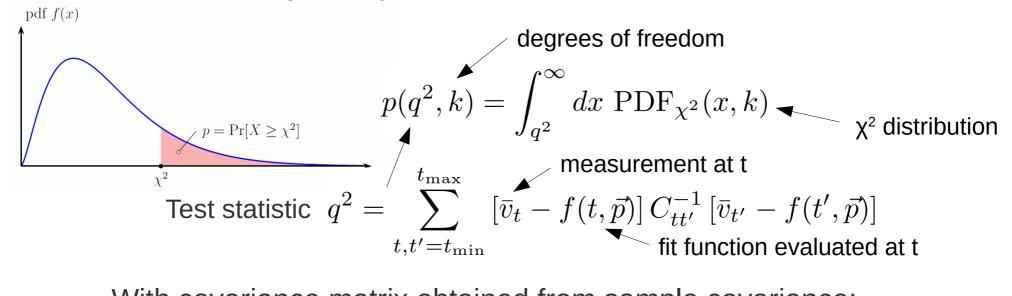
- Covariance matrix obtained from n-B values!
- Jackknife procedure ensures correct statistical error

I=0 ππ 2pt function with block jackknife



Goodness of fit

- Large number (741) of configurations encourages more sophisticated statistical techniques.
- In particular, well-controlled correlated fits allow for reliable goodness-offit metrics which aid fitting and systematic error estimation.
- Goodness-of-fit described by a p-value the probability of getting a worse fit allowing for only statistical fluctuations.



With covariance matrix obtained from sample covariance:

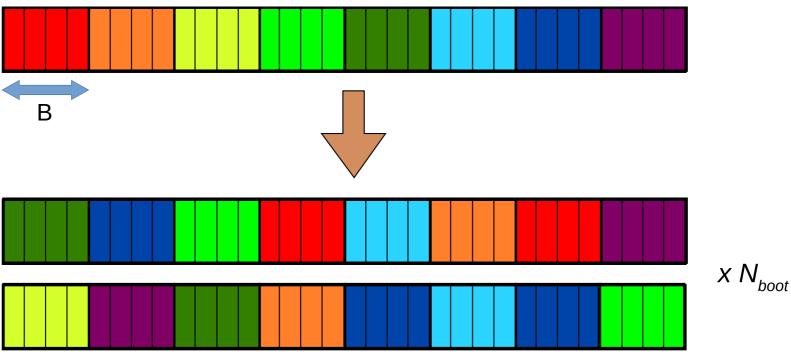
$$C_{tt'} = \frac{1}{n(n-1)} \sum_{i=1}^{n} \left[v_{i,t} - \bar{v}_t \right] \left[v_{i,t'} - \bar{v}_{t'} \right]$$
 25 / 35

P-value issues

- Despite high degree of stability under changing fit ranges, goodness of fit for $\pi\pi$ typically quite poor.
- Importance of reliable $\pi\pi$ fits strongly motivates resolving this issue.
- Key is to recognize that the χ^2 distribution does not account for fluctuations in the *covariance matrix* over the population.
- When cov. mat. is determined from data, finite statistics effects broaden the distribution of q² as the matrix fluctuates along with the data.
- For ensembles of *uncorrelated Gaussian data* (not QCD path integral-distributed!) the corrected distribution can be determined analytically: It is the Hotelling T² distribution, T²(k, n-1) for n samples.
- However in general there is no analytic result.
- Even if we assume Gaussian data, numerical tests indicate strong autocorrelation effects that can only be removed by binning to large bin sizes (a no-go for us!).

Non-overlapping block bootstrap (NBB)

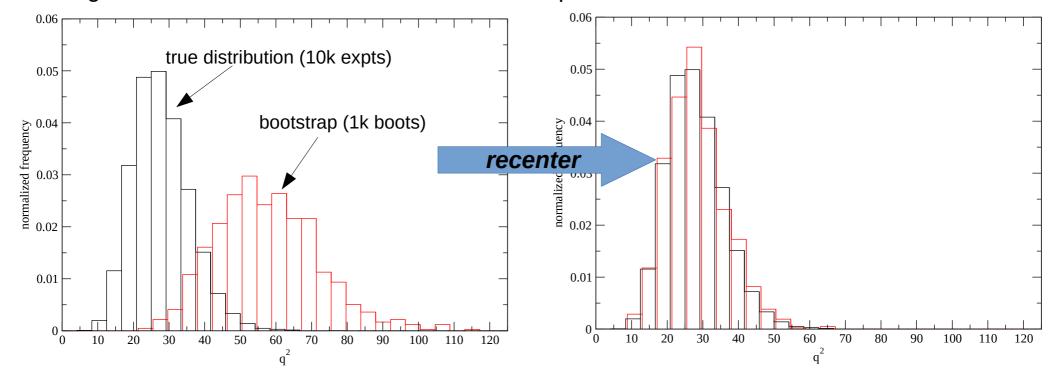
- The bootstrap technique allows us to estimate properties of the population from just one ensemble, by randomly resampling (with replacement).
- The (non-overlapping) block variant resamples blocks rather than single configurations, much like block jackknife, in order to account for autocorrelations:



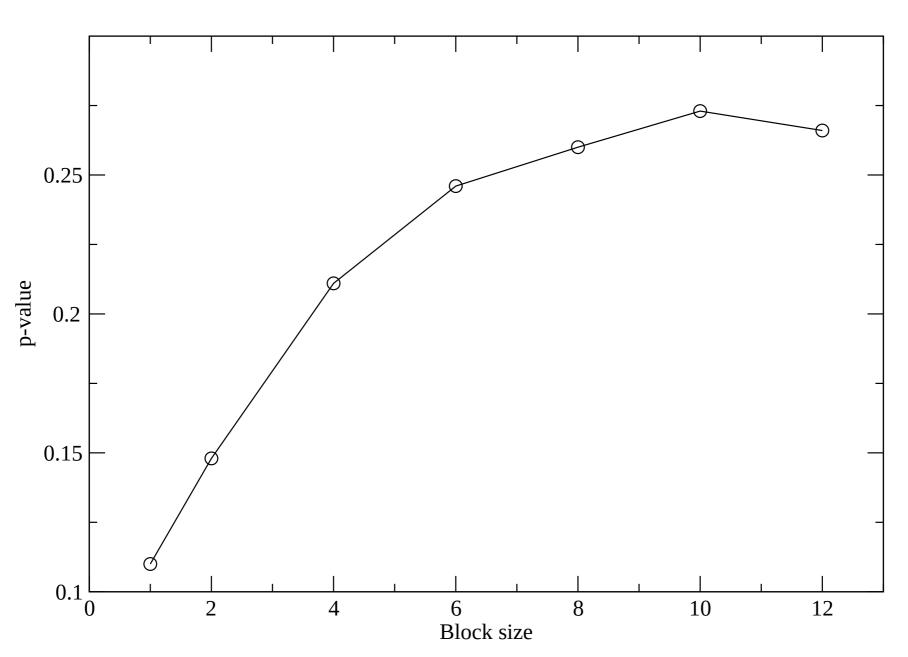
Computing p-values via bootstrap

- Use NBB to directly compute the distribution of q²!
 - No normality assumption
 - Blocking accounts for autocorrelations without binning
- Minor subtlety: bootstrap ensemble means \bar{b}^{lpha} distributed about ensemble mean \bar{v} not population mean
- Results in broader distribution of q² with larger mean
- Correct by "recentering": $\bar{b}^{\alpha}(t) o \bar{b}^{\alpha}(t) + [f(t,\vec{p}) \bar{e}(t)]$

gaussian data, no autocorrelations, 400 samples

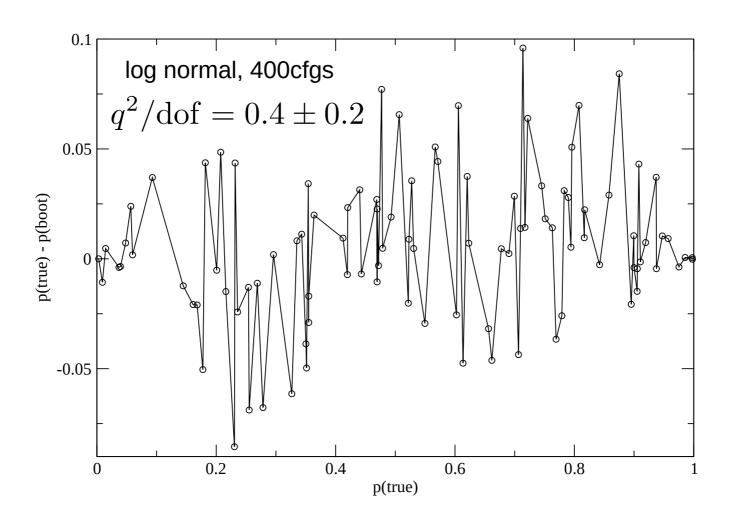


I=0 $\pi\pi$ fit bootstrap p-value



p-values for uncorrelated fits!

 Conventional wisdom is that one cannot obtain the goodness-of-fit for uncorrelated fits. Using the bootstrap technique we can!



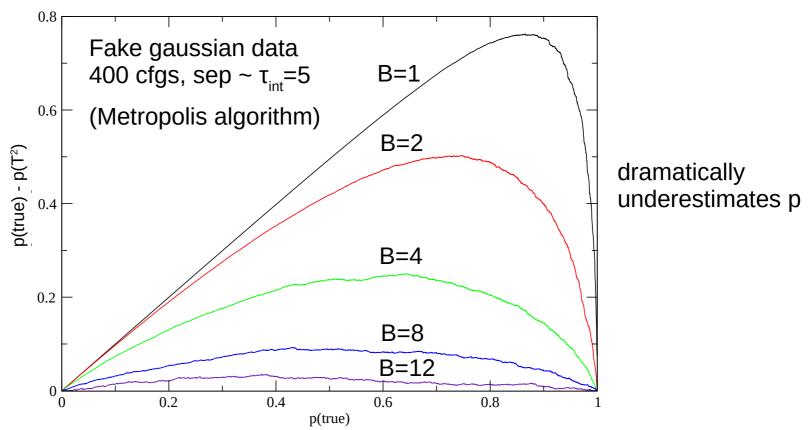
Conclusions

Conclusions

- Multi-operator techniques appear to resolve discrepancy with dispersive prediction for I=0 $\pi\pi$ phase shift.
- Marked improvement in quality of plateaus in $K \rightarrow \pi\pi$, better control over excited state systematics.
- Programmes for reducing other systematic errors in progress.
- Already achieved 2x improvement in NPR error via step scaling.
- Potential near-term reduction in Wilson coeff. systematic through NNLO PT calculation. In longer term we aim for a non-perturbative matching through the charm threshold.
- Advanced statistical techniques allow for more reliable p-values and enable us to account for mild autocorrelation effects without exploding our statistical error through binning.
- Expect no further hurdles to completion of project and we aim to publish within the next few months.

Is the Hotelling distribution sufficient?

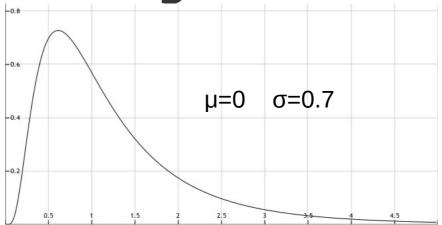
- Numerical experiments with fake data show Hotelling T² relatively tolerant of non-normality.
- **However** T² relies on independent configurations: *extremely* sensitive to autocorrelations.
- Even with binning, slow convergence to true distribution:



 Wish to avoid binning due to explosion in statistical error from reduced resolution of covariance matrix

Demonstration II - log-normal

400 cfgs, log-normal



Stat error and bias fall as $n, B \to \infty$ $(B \ll n)$

